Boundary knot method for 2D and 3D Helmholtz and convection-diffusion problems with complicated geometry
نویسندگان
چکیده
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using only relatively a small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
منابع مشابه
Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems
This paper concerns a numerical study of convergence properties of the boundary knot method (BKM) applied to the solution of 2D and 3D homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. The BKM is a new boundary-type, meshfree radial function basis collocation technique. The method differentiates from the method of fundamental solutions (MFS) in that it does not need ...
متن کاملRBF-based meshless boundary knot method and boundary particle method
This paper is concerned with the two new boundary-type radial basis function collocation schemes, boundary knot method (BKM) and boundary particle method (BPM). The BKM is developed based on the dual reciprocity theorem, while the BKM employs the multiple reciprocity technique. Unlike the method of fundamental solution, the two methods use the non-singular general solution instead of singular f...
متن کاملBoundary knot method based on geodesic distance for anisotropic problems
The radial basis function (RBF) collocation techniques for the numerical solution of partial differential equation problems are increasingly popular in recent years thanks to their striking merits being inherently meshless, integration-free, and highly accurate. However, the RBF-based methods have markedly been limited to handle isotropic problems due to the use of the isotropic Euclidean dista...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملRelationship between boundary integral equation and radial basis function
This paper aims to survey our recent work relating to the radial basis function (RBF) from some new views of points. In the first part, we established the RBF on numerical integration analysis based on an intrinsic relationship between the Green's boundary integral representation and RBF. It is found that the kernel function of integral equation is important to create efficient RBF. The fundame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001